
Evolutionary Algorithm Based on Automatically Designing of Genetic Operators

Dazhi Jiang, Chenfeng Peng
Department of Computer Science

Shantou University
Shantou, China

{dzjiang,11cfpeng}@stu.edu.cn

Zhun Fan
Department of Electronic and Information Engineering

Shantou University
Shantou, China

zfan@stu.edu.cn

Abstract—at present there is a wide range of evolutionary
algorithms available to researchers and practitioners. Despite
the great diversity of these algorithms, virtually all of the
algorithms share one feature: they have been manually designed.
Can evolutionary algorithms be designed automatically by
computer? In this paper, a novel evolutionary algorithm based
on automatically designing of genetic operators is presented to
address this problem. The resulting algorithm not only explores
solutions in the problem space, but also automatically generates
genetic operators in the operator space for each generation. In
order to verify the performance of the proposed algorithm,
comprehensive experiments on 23 well-known benchmark
optimization problems are conducted, and the results show that
the proposed algorithm can outperform standard Differential
Evolution (DE) algorithm.

Keywords—Evolutionary Algorithm; Automatically Designing;
Space of Genetic Operators;

I. INTRODUCTION

At present there is a wide range of evolutionary algorithms
available to researchers and practitioners. Despite the great
diversity of these algorithms, virtually all of the algorithms
share one feature: they have been manually designed. As a
result, current evolutionary algorithms inevitably incorporate
human biases and preconceptions in their designs.

In recent years, several automatic algorithm design
techniques were proposed to overcome this limitation. Hyper-
heuristics includes search methods that automatically select
and combine simpler heuristics, creating a generic heuristic
that is used to solve more general instances of a given type of
optimization problem. Hence, hyper-heuristics searches in the
space of heuristics, instead of in the problem solution space
[1], raising the level of generality of the solutions produced by
the hyper-heuristic evolutionary algorithm. Ant Colony
algorithms are population-based methods widely used in
combinatorial optimization problems. Jorge Taveres and
Francisco B. Pereira [2] proposed a grammatical evolution [3]
approach to automatically design ant colony optimization
algorithms. The grammar adopted by this framework has the
ability to guide the learning of novel architectures, by
rearranging components regularly found on human designed
variants. Furthermore, Jorge Taveres and Francisco B. Pereira
[4] proposed a strongly typed genetic programming [5]
approach to automatically evolve the communication
mechanism that allows ants to cooperatively solve a given
problem. For these two applications, results obtained with
several TSP instances show that the evolved pheromone
update strategies are effective, exhibit a strong generalization
capability and are competitive with human designed variants.

For rule induction algorithms, Gisele L. Pappa and Alex A.
Freitas [6] proposed the use of Grammar-based Genetic
Programming (GGP) to automatically evolve rule induction
algorithms. The experiments involving 11 data sets show that
novel rule induction algorithms can be automatically
generated using GGP. Mihai Oltean and Grina Grosan [7]
used Multi Expression Programming (MEP) [8] technique to
evolve evolutionary algorithm, in which Each MEP
chromosome encodes multiple EAs.

Although the aforementioned automatic algorithms have
different emphases on research objectives and contents, one
thing in common is that they use automatic method to design
algorithms, which shows that automatic programming method
can build algorithms to solve problems automatically.

As the core components of the evolutionary algorithms,
the genetic operators, such as mutation, combination, etc., are
more variable and complicated compared with other
components, such as initialization, selection, etc. in the
algorithm framework. Therefore, more innovation may be
achieved if we focus on design of genetic operators. This
paper proposes a novel approach to design genetic operators
in evolutionary algorithm, namely the evolutionary algorithm
based on automatically designing of genetic operators
(EA2DGO), which uses MEP with a new encoding scheme [9]
to automatically generate genetic operators in the evolutionary
algorithm to solve problems. Organization of this paper is as
follows. In Section II, the generic expression of genetic
operators is introduced. The framework of EA2DGO are
described in Section III. Experimental verifications are given
in Section IV. The last section gives conclusions.

II. THE GENERIC EXPRESSION OF GENETIC OPERATORS

It is important to investigate what expressions of genetic
operators are amenable to automatic design, for which we can
get inspirations from analyzing a Standard Genetic Algorithm
(SGA), Particle Swarm Optimization (PSO) [10] and
Differential Evolution (DE) [11].

SGA with the real coding usually adopts arithmetic
crossover as one of the genetic operators. Take total
arithmetic crossover for example, assume N is a constant
number which presents the size of the population, and D is the
dimension of the parameter vector. The population P is then
expressed as { (), 1, 2, , }ip X t i N� � � , t is the generation.
Select two individuals ()jX t , ()kX t from the population
according to certain rule, where , {1,2, , }� �j k N , j k� . The

child vector (1) ()X t and (2) ()X t could be generated by
arithmetic operators and expressed as following:

2013 Ninth International Conference on Computational Intelligence and Security

978-1-4799-2548-3/13 $31.00 © 2013 IEEE

DOI 10.1109/CIS.2013.21

66

2013 Ninth International Conference on Computational Intelligence and Security

978-1-4799-2548-3/13 $31.00 © 2013 IEEE

DOI 10.1109/CIS.2013.21

66

2013 Ninth International Conference on Computational Intelligence and Security

978-1-4799-2548-3/13 $31.00 © 2013 IEEE

DOI 10.1109/CIS.2013.21

66

2013 Ninth International Conference on Computational Intelligence and Security

978-1-4799-2548-3/13 $31.00 © 2013 IEEE

DOI 10.1109/CIS.2013.21

66

2013 Ninth International Conference on Computational Intelligence and Security

978-1-4799-2548-3/13 $31.00 © 2013 IEEE

DOI 10.1109/CIS.2013.21

66

2013 Ninth International Conference on Computational Intelligence and Security

978-1-4799-2548-3/13 $31.00 © 2013 IEEE

DOI 10.1109/CIS.2013.21

66

(1) () () (1) ()

() (() ())
j k

k j k

X t X t X t
X t X t X t
� �

�

� � �

� � �
 (1)

(2) () () (1) ()

() (() ())
k j

j k j

X t X t X t
X t X t X t
� �

�

� � �

� � �
 (2)

where 1 2{ , , , }D� � � �� � and [0,1]l� � , 1, 2, ,l D� � .
PSO, like other evolutionary algorithms, is also a

population-based search algorithm and starts with an initial
population of randomly generated solutions called particles.
Each particle in PSO has a velocity and a position. The
velocity d

iV and position d
iX of the dth dimension of the ith

particle are updated according to the following equations:
1

2

(1) () * 1 *(() ())

* 2 *(())

d d d d d
i i i i i

d d d
i i

V t V t c rand pbest t X t

c rand gbest X t

� � � �

� �
 (3)

(1) () (1)d d d
i i iX t X t V t� � � � (4)

Where 1,2, ,i � � is the particle’s index,
1 1(, , ,)D

i i i iX X X X� � is the position of the ith particle;
1 1(, , ,)D

i i i iV V V V� � represents velocity of ith particle.
1 2(, , ,)D

i i i ipbest pbest pbest pbest� � is the vest previous
position yielding the best fitness value for the ith particle.

1 2(, , ,)Dgbest gbest gbest gbest� � is the best position
discovered by the whole population. 1d

irand and 2d
irand are

two random numbers independently generated within the
range of [0, 1], c1 and c2 are two learning factors reflecting the
weighting of stochastic accelerations terms that pull each
particle toward pbest and gbest positions, respectively.

1, 2,t � � , indicates the iterations.
DE is a population-based, direct, robust and efficient

search method. Like other evolutionary algorithms, DE starts
with an initial population vector randomly generated in the
solution space. The main difference between DE and other
evolutionary algorithms, such as SGA and PSO, is its new
generation vectors generating method. In order to generate a
new population vectors, three vectors in population are
randomly selected, and weighted difference of two of them is
added to the third one. The procedure could be illustrated as
following:

Mutation: For each vector i from generation t, a mutant
vector (1)iX t � is defined by

1 2 3
(1) () (() ())i r r rX t X t F X t X t� � � � (5)

Where {1,2, , }i N� � and 1 2 3, , [0,]r r r N� , i , 1r , 2r and 3r
are different.

Through the analysis above, the following observations
are made:
i.Genetic operator is a formula which is composed by objects

(such as ()jX t and ()kX t), arithmetic operators (+,-,*) and
parameters (such as� , F).

ii.The formula representing the genetic operator can have
many variants. For example, DE and PSO have similar but
different formulas, which is again different from the formula
of SGA. For the automatically designing of genetic

operators, the most different characteristic compared with
traditional genetic operators is that its structure could be
reconstructed by computer, which means that the genetic
operators could be generated adaptively according to the
requirements of problem.
iii.While existing evolutionary algorithms (including SGA, DE,
PSO, etc.) have different formulas, they actually share
significant commonality. An automatic way of generating
novel formula (using the existing objects, arithmetic
operators, and parameters) may lead to very novel design of
evolutionary algorithm which can adapt itself to address
problems with very dynamic and changing nature.

According to the i, ii and iii, we could design a scheme
to represent the genetic operator for automatic design. Only
consider of Eq.(1). Suppose () , () ,k jX t a X t b c�� � � ,
the Eq.(1) could expressed by an expression tree as in Fig.1.

Figure 1. The expression tree of genetic operator Eq.(1) in SGA

In automatic programming, such as GEP (Gene
Expression Programming)and MEP, an expression tree is a
phenotype of chromosome, and the phenotype could be
translated into an equivalent linear genotype. Suppose the
length of one chromosome is 7,

{ , , }T a b c� and { , ,*}O � � � , the expression tree in Fig.1
could be expressed as a genotype as follows.

1 2 3 4 5 6 7
+ a * c - b a

2 3 4 5 6 7

Figure 2. the equivalent genotype of Eq.(1) in SGA

Each gene in the equivalent genotype encodes a terminal
or a function symbol. A gene that encodes a function includes
pointers towards the function arguments. Function arguments
always have indices of higher values than the position of the
function itself in the chromosome [9]. Phenotype translation is
obtained by parsing the chromosome right-left. A terminal
symbol specifies a simple expression. A function symbol
specifies a complex expression obtained by connecting the
operands specified by the argument positions with the current
function symbol. For simplicity, the expression tree expressed
by the first symbol is represented as the chromosome’s final
presentation.

The chromosome could be reconstructed with no
difficulty. Every gene could be changed into another terminal
or function symbol, so does the function arguments. When the
gene or function arguments are changed, the genotype and
phenotype of chromosome are transformed in the meanwhile.
If we can design a self-organized framework to adjust the
structure of chromosome adaptively in the problem solving,
the genetic operators could be designed automatically.

676767676767

III. EVOLUTIONARY ALGORITHM BASED ON
AUTOMATICALLY DESIGNING OF GENETIC OPERATORS

Single-objective optimization problems are adopted to
verify the validity of the EA2DGO algorithm. This means that
the genetic operators represented by above scheme are used to
manipulate the individuals in the population in the problem
space, and the goal is to find the problems’ global optimal
solution. However, in the automatically designing of genetic
operators, the genetic operators it not predefined by designer
before problem solving. Actually, the genetic operators is
searched and designed in the process of problem solving.
Thus, the framework of the EA2DGO consists two core
components, one is function optimization unit, which is
searching in the problem solution space, and, the other one is
automatically designing genetic operators unit, which is
searching in the genetic operators’ space.

1. Begin

2. Input: NP, NOP, F, CR, OMR, Max_Fes, h, t, times, T, and O;

3. G=0

4. Create the function optimization population i
Gx� , i� , 1, ,i NP� �

5. Create the genetic operators population
�k

Go ,�k , 1, ,� �k NOP
6. () 0�

� i
Gf o ,�k , 1, ,� �k NOP

7. Evaluate ()�i
Gf x , i� , 1, ,i NP� �

8. ForG=1 to Max_FES Do

9. Find the best
�best

Gx in NP

10. Call Function Optimization unit

11. If([0,1) 	rand OMR) Then

12. Call Automatically Designing Genetic Operators unit

13. End If

14. G++

15. End For

16. Output
�best

Gx

17. End

Figure 3. The general framework of EA2DGO

The general framework of EA2DGO is given in Fig.3.
Where NP denotes the size of function optimization
population; NOP denotes the size of operator generating
population; F denotes scaling factor; CR denotes the
probability of crossover; OMR denotes the probability of
Mutation for operators in operator generating population;
Max_FEs denotes the max number of function calls; h is the
of head length of chromosome in new encoding scheme MEP;
t is the tail length; times denotes the number of repeat times
which randomly select individuals for mutation manipulation
from population in function optimization unit; T is the
terminal symbol set; O is the function symbol set.

The function optimization unit focuses on the solving of
global optimal solution in the problem solution space. The
framework is given in Fig.4. According to the framework, we
can see that the function optimization unit is very familiar

with DE, including the population initialization, crossover
manipulation, individual fitness assessment, individual
selection, etc. For automatically designing genetic operators,
an individual

�k
Go , [1,]�k NOP , is selected from the

population according to the Roulette Wheel Selection, and the
selected individual will be used in mutation process in the
function optimization unit. The GeneCalculate function
focuses on the fitness calculate gene by gene. The input
includes several individuals selected from function
optimization population and one individual selected from
genetic operators’ population. The specific fitness calculation
method could see [11]. After D times GeneCalculate, a new
candidate , 1�

� i
j Gu is generated finally.

1. Begin

2. Suppose the function optimization population is
i
Gx� , i� , 1, ,i NP� �

3. Suppose the genetic operators population is
�k

Go ,�k , 1, ,� �k NOP

4. For i=1 to NP Do

5. Select randomly 1 2 3r r r i� � � , 1 2 3, , [1,]�r r r NP :

6. Select
�k

Go , [1,]�k NOP by Roulette Wheel Selection

7. randj =randint(1,D)

8. For j=1 to D Do

9. If([0,1) 	jrand CR or � randj j) Then

10. , 1 ,� � �
�i i

j G j Gu x GeneCalculate(1
,
�r

j Gx , 2
,
�r

j Gx , 3
,
�r

j Gx , ,
�best

j Gx ,
�k

Go)

11. Else

12. , 1 ,� �
� �i i

j G j Gu x
13. End If

14. End For

15. If (better(, 1�
� i

j Gu ,
� i

j Gx)) Then

16. 1 1� ��
� �i i

G Gx u
17. () � ��k

Gf o
18. Else

19. 1� �
� �i i

G Gx x
20. End If

21. End For

22. End

Figure 4. The framework of Function Optimization

In automatically designing genetic operators unit, the
most important work is the manipulation and evolution of the
genetic operators. Suppose the individual before genetic
manipulation is

�k
Go , and the new generated individual after

genetic manipulation is
� k
Go). A proposed way to assess the

candidate
� k
Go in this paper is: within a certain times, we

repeatedly select individuals from population in function
optimization unit, then generate new candidates r

Gu� and r
G�
�

686868686868

by
�k

Go and
� k
Go respectively. Counting the times that the

fitness of child better than its parent r
Gx� , donate by ()�k

GST o
and ()
� k

GST o respectively. If ()�k
GST o < ()
� k

GST o , we think

that the candidate
� k
Go is better than

�k
Go , and

�k
Go is replaced

by
� k
Go . The most disadvantage of this method is that,

although this method can effectively assess the individual
before and after genetic manipulation, it cost more computing
resources.

The general framework of automatically designing
genetic operators unit is given in Fig.5.

1. Begin
2. Input: �k

Go = 1, ,{ , , }� ��k k
G m Go o , [1,]�k NOP ;

3. Select randomly t , [1,]�t m :

4. Select a new operator to
,
�k

t Go which will generate a new chromosome k
Go
�

5. For i=1 to times Do
6. Select randomly 1 2 3r r r r� � � , 1 2 3, , , [1,]r r r r NP� :

7. randj =randint(1,D)
8. For j=1 to D Do
9. If([0,1) 	jrand CR or � randj j) Then

10. , ,
r r
j G j Gu x� �
� �

GeneCalculate(1
,
�r

j Gx , 2
,
�r

j Gx , 3
,
�r

j Gx ,
,
�best

j Gx , �k
Go)

11. , ,
r r
j G j Gx� � �
� �

GeneCalculate(1
,
�r

j Gx , 2
,
�r

j Gx , 3
,
�r

j Gx , ,
�best

j Gx , k
Go
�)

12. Else

13. , , ,
r r r
j G j G j Gu x�� �

�� �

14. End If
15. End For
16. If (better(,r r

G Gu x� �
)) Then

17. () � ��k
GST o

18. End If
19. If (better(,r r

G Gx�� �)) Then

20. ()k
GST o
 � �
�

21. End If
22. End For
22. If (()�k

GST o > ()k
GST o
�) Then

24.
1

k
Go �

� =
�k

Go
25. Else
26. 1

k
Go �

�
= k

Go
�

27. End If
28. End

Figure 5. The framework of automatically designing genetic operators unit

IV. EXPERIMENTAL VERIFICATION

For experiment verification, 23 benchmark functions,
which are well-known and frequently used, are selected from
the [13]. In order to verify the effectiveness and efficiency of
EA2DGO algorithm, we carry out experiment based on these
23 benchmark functions.

In our experiment, we set NP=100, F=0.7, CR=0.8,
OMR=0.15, Max_FEs=250000, for new encoding scheme
MEP in automatically designing genetic operators unit,

NOP=5, h=5, t=6, L=11, times =50, { , , , , }�T a b c d F (a

is 1
,
�r

j Gx , b is 2
,
�r

j Gx , c is 3
,
�r

j Gx , d is ,
�best

j Gx) and { , ,*}O � � � . In
order to verify the performance of the proposed algorithm,
Standard DE algorithm is conducted. In DE algorithm,
NP=100, F=0.7, CR=0.8, Max_FEs=250000. The obtained
results are presented in Table 2. Simulation is carried out in
Eclipse and run on an AMD laptop with 2G RAM under
Windows XP platform. For each test problem, 25 independent
runs were conducted with different random initialization.

The results on functions F1 to F23 are summarized in
Table I. For functions F1-F5, F7, F9-F11, the EA2DGO
achieved better than DE. For functions F6, F12-F14, F16-F23,
all two algorithms obtain the exactly same result. DE
achieved the best in function F8 and F15. In F15, while the
result of the EA2DGO closes to DE, and both algorithms have
the ability to get best solution. The most difference from the
results is the function F8, in which DE can easily obtain the
global minima but, the new algorithm presented in this paper
easily falls into the local minima.

The convergence comparisons between the EA2DGO and
DE are shown in Fig.7. For simplicity, each Figure shows the
result of a random trial. Because of space limitation, just some
samples (F2, F4, F7 and F9) are selected and presented.
According to Fig.7, we can find that EA2DGO can converge
to a better optimal solution quickly than DE in every trail.

 F2 F4

 F7 F9
Figure 6. Convergence curves of the automation of EA for single objective
optimization algorithm and DE for partial test functions. X axis represents

number of function calls and Y axis represents the best fitness.

V. CONCLUSION

A novel evolutionary algorithm based on automatically
designing of genetic operators is presented to tentatively solve
algorithm designed automatically problem. EA2DGO is not
only searching in the problem solution space, but also
searching in the space of genetic operators, which means the
genetic operators it not predefined by designer before problem
solving, but searched and designed automatically in the
process of problem solving. For future work, the validity
analysis for EA2DGO should be carried out urgently.
Moreover, parameters in presented algorithm are not analyzed.
Further research could focus on the parameters researching

696969696969

and the adaptations of parameters’ settings during the
evolving procedure.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their very detailed and helpful review. This work was
supported by the National Natural Science Foundation of

China (No.: 61175073) , in part by Natural Science
Foundation of Guangdong Province (No.: S2013010013974),
in part by the Leading Talent Project of Guangdong Province,
in part by the Shantou Science and Technology Planning
Project (No.:150) and Li Ka-Shing Foundation Project.

TABLE I. THE RESULTS ACHIEVED FOR F1 TO F23 USING EA2DGO FOR SINGLE OBJECTIVE OPTIMIZATION ALGORITHM AND DE ALGORITHM

EA2DGO DE
Best Median Worst Mean Std Best Median Worst Mean Std

F1 0.0 0.0 0.0 0.0 0.0 2.38E-90 7.58 E-89 3.90E-88 1.07 E-88 9.22E-89

F2 0.0 0.0 0.0 0.0 0.0 3.07E-52 1.0E-51 6.34E-51 1.36 E-51 1.17E-51

F3 0.0 0.0 0.0 0.0 0.0 9.84E-87 1.8 E-85 6.8 E-85 2.23 E-85 1.7 E-85

F4 0.0 0.0 0.0 0.0 0.0 1.349 9.494 13.075 8.293 2.836

F5 0.0 22.117 29.0 13.001 10.839 1.810 18.356 71.343 23.886 14.486

F6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

F7 3.74E-5 8.61 E-5 1.78 E-3 8.82E-4 4.26E-4 2.1E-3 3.3E-3 4.76E-3 3.3 E-3 5.81E-4

F8 -12569.487 -11858.856 -5897.496 -10864.79 1755.355 -12569.487 -12451.048 -12095.733 -12419.463 118.28

F9 0.0 0.0 0.0 0.0 0.0 0.0 1.99 6.96 2.12 1.32

F10 4.441 E-16 4.441 E-16 4.441 E-16 4.441 E-16 0.0 4.0E-15 7.55E-15 7.55E-15 5.89E-15 1.37E-15

F11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.4E-3 4.93E-4 1.43E-3

F12 1.571 E-32 1.571 E-32 1.571 E-32 1.571 E-32 0.0 1.571 E-32 1.571 E-32 1.571 E-32 1.571 E-32 0.0

F13 1.35 E-32 1.35 E-32 1.35 E-32 1.35 E-32 0.0 1.35 E-32 1.35 E-32 1.35 E-32 1.35 E-32 0.0

F14 0.998 0.998 0.998 0.998 3.2E-8 0.998 0.998 0.998 0.998 8.6E-17

F15 3.075 E-4 3.075 E-4 1.791 E-3 4.496 E-4 1.024 E-4 3.075 E-4 3.075 E-4 1.22E-3 3.69E-4 1.77E-4

F16 -1.03163 -1.03163 -1.03163 -1.03163 0.0 -1.03163 -1.03163 -1.03163 -1.03163 0.0

F17 0.398 0.398 0.398 0.398 1.715 E-4 0.398 0.398 0.398 0.398 0.0

F18 3 3 3 3 2.045E-14 3 3 3 3 6.88E-16

F19 -3.86 -3.86 -3.86 -3.86 2.66E-9 -3.86 -3.86 -3.86 -3.86 9.25E-13

F20 -3.32 -3.32 -3.32 -3.32 4.79E-7 -3.32 -3.32 -3.32 -3.32 6.27E-12

F21 -10.153 -10.153 -10.153 -10.153 1.01E-9 -10.153 -10.153 -10.153 -10.153 1.38E-15

F22 -10.403 -10.403 -10.403 -10.403 2.59E-9 -10.403 -10.403 -10.403 -10.403 1.38E-15

F23 -10.536 -10.536 -10.536 -10.536 1.03E-9 -10.536 -10.536 -10.536 -10.536 1.85E-15

REFERENCES

[1] Dorigo, M. and G. Di Caro. The ant colony optimization meta-heuristic.
In D. Corne,M. Dorigo, and F. Glover, eds., New Ideas in Optimization,
pp. 11–32. McGraw-Hill, 1999.

[2] Jorge Taveres and Francisco B. Pereira, Automatic Design of Ant
Algorithms with Grammatical Evolution, 15th European Conference on
Genetic Programming,2012, pp.206–217.

[3] Ryan C., Collins J.J., O'Neill M. Grammatical Evolution: Evolving
Programs for an Arbitrary Language. Lecture Notes in Computer
Science 1391. First European Workshop on Genetic Programming 1998,
pp.83-95.

[4] Jorge Taveres and Francisco B. Pereira, designing pheromone update
strategies strongly typed genetic programming, 14th European
conference on Genetic programming, 2011, pp.85-96.

[5] Koza, J. R., Genetic Programming: On the Programming of Computers
by Meansof Natural Selection, MIT Press, Cambridge, MA, 1992.

[6] Pappa, G. L., FREITAS, A. A. Towards a genetic programming
algorithm for automatically evolving rule induction
algorithms,ECML/PKDD 2004 - Workshop on Advances in Inductive
Learning, 2004, pp.93-108.

[7] Mihai Oltean and Grina Grosan, Evolving Evolutionary Algorithms
using Multi Expression Programming,Advances in Artificial Life,
Lecture Notes in Computer Science, Vol.2801, 2003, pp.651-658

[8] Oltean M., Dumitrescu D.,Multi Expression Programming, technical
report,UBB-01-2002, Babes-Bolyai University, Cluj-Napoca, Romania.

[9] Dazhi Jiang, Zhifei Wang, Haojun Sun and Yulin Du, A Unified Fitness
Calculation Method for Automatic Modeling Algorithms, Proceedings
of the 8thWorld Congress on Intelligent Control and Automation, July
6-9 2010, Jinan, China,pp1569-1573.

[10] Kennedy J, Eberhart RC. Particle swarm optimization. In: Proc. of the IEEE
Conf. on Neural NetWork, IV.Perth: IEEE Press, pp.1942-1948, 1995.

[11] Storn R, Price K, “Differential Evolution-A simple and efficient
heuristic for global optimization over continuous spaces”, J. Global
Optim., vol.11,1997, pp.341-359.

[12] Dazhi Jiang, Zhijian Wu, and Lishan Kang, “New Method Used in Gene
Expression Programming: GRCM,” Journal of System Simulation,
vol.18, Jun. 2006, pp.1466-1468

[13] X. Yao, Y. Liu, and G. Lin, "Evolutionary programming made
faster", ; IEEE Trans. Evolutionary Computation, 1999, pp.82-102.

707070707070

